TNI PT Board Meeting Summary November 19, 2009

1) Roll call and approval of minutes:

Chairman Eric Smith called the TNI PT Board to order on November 19, 2009, at 1:00 PM EST. Attendance is recorded in Attachment A. Associates: Jeff Lowry, Randy Querry and Chuck Wibby were also present. Maria Friedman (Chair, SSAS) also sat in on the first part of the meeting. The meeting was adjourned at 2:33pm EST (Motion: Curtis Second: Gary Unanimously approved.)

The minutes from the last meeting (October 15, 2009 and November 5, 2009) were reviewed. A motion was made by Gary to accept the minutes. It was seconded by Steve. The motion was unanimously accepted and the minutes will be posted to the TNI website.

2) SSAS

Maria joined the meeting to invite members of the PT Board and FoPT subcommittees to join SSAS in review of their table. Members can e-mail Maria if they are interested in helping. They will be meeting on Mondays at 2pm EST.

Maria will send a general invitation to the PT Board members and Carl will forward this invitation to Chemistry FoPT subcommittee members.

3) Non-Potable Water FoPT Table Update

Eric distributed the cover letter below (prepared by Carl) to the PT Board on November 18th:

Dear PT Board Members:

In response to request by Patrick Yellin, US EPA DMRQA Coordinator, and referral by the TNI PT Board, I am pleased to present for your approval the attached NPW FoPT Table for your approval. This Table of accreditation FoPT's adds Mercury and Total Residual Chlorine at lower concentration ranges. Please note that the original concentration ranges for Mercury and Chlorine in NPW PT's are retained, but the lower concentration ranges are added to address DMRQA issues. The Table also makes clarifying editorial corrections to some footnotes. The Subcommittee is recommending effective date for this Table to be January 1, 2010, to accommodate US EPA requests for these PT's to be available for the next DMRQA testing round. The PT Providers on the Chemistry Subcommittee do not have any issues with this effective date, in lieu of allowing up to 6 months from the Table approval under normal circumstances.

The votes for approval of this Table from the Subcommittee are 6 Yes votes, 1 No vote, and 1 Abstention.

The correlation coefficient for the regression analysis of Standard Deviation versus Assigned Value fails our usual criteria (0.75) for this analyte. Nevertheless, the Subcommittee as a whole felt that it was more important to accommodate US EPA's requests in this case.

In case the NELAP Board asks questions to this effect, we recommend that the answer of which PT that NELAP accredited laboratories analyze should be predicated on how the laboratory participant analyzes regular samples, as is the case currently for the two concentration ranges available for PAH's. For example, if the accredited laboratory does Chlorine only for EPA CWA DMRQA work, it should analyze the low-level PT. If the laboratory is accredited for both EPA 245.1 and EPA 1631E, it should analyze both Mercury PT's at the NELAC-prescribed frequency (if the PT concentration ranges are also typical for the routine samples).

Please feel free to contact me by e-mail or at 904-637-9239 if you have any questions. Thank you for your consideration.

A copy of the proposed limits table can be found in Attachment B. Changes are in red. The changes include:

- 1) Effective date
- 2) Addition of analytes under Low Level Analytes header
- 3) Addition of footnote 15
- 4) Delete footnote 21 on Total Phosphorous

Carl and Chuck discussed their reservations on the Low Level Mercury and Low Level Residual Chlorine levels set by the Chemistry FoPT Subcommittee.

A motion was made by Curtis to approve the revisions to the table (Attachment B). The motion was seconded by Gary. Vote: Yes - 4 No - 1 (Steve) Abstain - 2 (Matt and Carl) The motion did not pass.

Eric asked what concerns were present. Steve was concerned about the validity of the criteria and thinks the NELAP Board will have an issue. Chuck commented that the limits of the low level will be tighter than the higher level. The Hach method claims that it can achieve the low limits on the Total Residual Chlorine, but Chuck felt the data did not support the limits. The LCS limits for 1631 are 179-121%, so Carl's thoughts were that a fixed limit of 60-140% should be acceptable. Jeff noted there were 13 studies with an original limit of \pm 25% that generated the data the subcommittee evaluated. The failure rate was about 5%.

Carl, Matt and Steve would vote "Yes" on accepting the table (Attachment B) if the Total Residual Chlorine was removed. Curtis asked if the PT Board could look at the data that the subcommittee examined to set-up the limits.

A motion was made by Matt to approve the Low Level Mercury portion of the NPW table (Attachment B). The motion was seconded by Gary and unanimously approved.

Eric will notify the NELAP Board and Patrick Yellin of the vote. He will forward the updated table for approval (without the inclusion of Low Level Total Residual Chlorine) and give them the time line. Chuck and Carl have been asked to forward their concerns about Low Level Total Residual Chlorine in writing. Jeff and Carl have been asked to forward the data for the Low Level Total Residual Chlorine. Brian Boling will be asked by Carl to provide the reasons for approving the limits for Low Level Total Residual Chlorine. Ilona will forward the November 3rd Chemistry FoPT Subcommittee minutes to the PT Board and Eric will invite Patrick to the next PT Board call.

4) Chemistry FoPT Subcommittee Update

In the next subcommittee call they should be able to finish up the experimentals on the Drinking Water table. Herbicides and Carbamates are the only ones left and Jeff will have them for the group to review.

It does not look like the WP and Solids Experimental Analytes will be available by December 17, 2009. The Chemistry FoPT Subcommittee will be asked when they feel these other two tables can be completed. This information will be included in the notification to the NELAP Board regarding the status of the completion of the table. Eric will plan to finalize the Drinking Water experimentals on the December 17th PT Board conference call.

Jeff noted that it would be easier to focus on the groups instead of just the experimentals if we are no longer shooting for the January 2010 deadline. If so, could the subcommittee just finish up the rest of the DW analytes? The subcommittee will continue to meet weekly through December 22, 2009. Chuck offered an alternative viewpoint. He felt the group should continue with the experimentals since this is where the big concerns are. Once the experimentals are done ... then determine a time frame for an update for the rest of the analytes.

The Board agreed that the Chemistry FoPT subcommittee should continue working on the experimentals as they have been doing.

5) A2LA Documents

Eric prepared some comments last Friday and e-mailed them to the PT Board:

Dear PT Board members,

My comments for your consideration on the attached R303 document are as follows:

1) Page 11, Section VIII, first paragraph, first sentence – Minor editorial comment – Suggest A2LA relook at the wording of this sentence for consistency with other edits in this document. Should "accredited proficiency testing" remain in this sentence? "NELAC providers" doesn't sound right.

2) Page 15, Section XIII, last paragraph – question for A2LA – This sentence says PT providers may appeal. Is the right to appeal only granted to PT providers and not SSAS providers (assuming SSAS providers may not be PT providers)?

3) Page 15, Section XIV, last paragraph – A2LA has removed the statement indicating that they will alert NELAC to any change in the status of the NELAC PT provider's A2LA accreditation. Section 3.5.5 of the "Scope of Work" agreement that the TNI PT Board worked on earlier this year and submitted back to A2LA and TNI indicated that A2LA shall provide written notice to the TNI PT Board upon suspension or revocation of a PT Provider's accreditation. Should not/could not this statement be added to this R303 document? Currently this document does not appear to mention any requirement to notify the TNI PT Board when a PT Provider's accreditation is suspended or revoked.

Randy will get revised documents to Eric later today and this will be forwarded to the PT Board for final review. Final comments should be e-mailed to Board members and Randy. A vote will be held at the December 17, 2009 meeting.

A question came up about which final version should be sent to the TNI Board - a cleaned up version or a version that includes the edits. It was decided it will be the edited version.

6) Discuss Standard Interpretation Requests 72, 75, 80, 91, and 95

Eric will compile all the responses and send them out for e-mail comments and a possible e-mail vote on 75, 80, and 91. Additional work is still needed on 95. 72 will require some e-mail discussion or teleconference discussion.

(Late Addition, 11-24-09): Eric distributed the table and it is included as Attachment C.

7) New Items

- Examine TNI reorganization ideas at the next meeting.

8) Open Action Items

The Action Items table was reviewed and updates were made directly into the table.

10) Next Meeting

The next meeting of the PT Board will be Thursday, December 17, 2009, at 1pm EST.

Action Items are included in Attachment D and Attachment E includes a listing of reminders.

Attachment A

Participants TNI Proficiency Testing Board

Members	Affiliation	Contact Information
Eric Smith,	TestAmerica	615-726-0177 x1238
Chair (2009)		eric.smith@testamericainc.com
Present		
llona Taunton,	TNI	828-712-9242
Program Administrator Present		tauntoni@msn.com
Gary Dechant	Analytical Quality	970-434-4875
	Associates, Inc.	gldechant@aol.com
Present		
Amy Doupe	Lancaster Laboratories,	717-656-2300 x1812
	Inc.	aldoupe@lancasterlabs.com
Absent		
Steve Gibson	Texas Comm. on Env.	512-239-1518
	Quality	jgibson@tceq.state.tx.us
Present	-	
Svetlana Isozamova	Accutest Laboratories –	407-425-6700
	Southeast Division	svetlani@accutest.com
Absent		
Michella Karapondo	USEPA	513-569-7141
·		karapondo.michella@epa.gov
Absent		
Carl Kircher	Florida DOH	904-791-1574
		carl_kircher@doh.state.fl.us
Present		
Stacie Metzler	HRSD	757-460-4217
		smetzler@hrsd.com
Present		
Matt Sica	State of Maine	207-287-1929
		matthew.sica@maine.gov
Present		Ŭ
Curtis Wood	Environmental Resource	303-431-8454
	Associates	cwood@eraqc.com
Present		

Attachment B

NELAC PT for Accreditation Fields of Proficiency Testing with PTRLs Non-Potable Water (NPW) Effective January 1, 2010

Matrix	EPA Analyte	NELAC Analyte	Analyte ^{1,2}	Conc Range		Acceptance Criteri	a ^{3,4,5,6}		NELAC PTRL ⁷
	Code	Code			а	b	С	d	
			Microbiology	CFU/100 mL					CFU/100 mL
						Log transform; ±3			
NPW	0233	2500	Total Coliform, MF ¹³	20 to 2400		SD			2
NPW	0235	2530	Fecal Coliform, MF ¹³	20 to 2400		Log transform; ±3 SD			2
	0200	2000		20102100		Log transform; ±3			-
NPW		2525	E.coli, MF ¹³	20 to 2400		SD			2
		2520	Enterococci, MF ¹³	20 to 1000		Log transform; ±3			2
NPW		2520	Enterococci, MF	2010/1000		SD			∠ MPN/100
				MPN/100 mL					mL
						Log transform; ±3			
NPW	0234	2500	Total Coliform, MPN ¹⁴	20 to 2400		SD Log transform; ±3			2
NPW	0236	2530	Fecal Coliform, MPN ¹⁴	20 to 2400		SD			2
	0200					Log transform; ±3			
NPW		2525	E.coli, MPN ¹⁴	20 to 2400		SD			2
NPW		2520	Enterococci, MPN ¹⁴	20 to 1000		Log transform; ±3 SD			2
		2320		20101000		50			2
			Trace Metals	μg/L					µg/L
NPW	0001	1000	Aluminum	200 to 4000	0.9919	4.2186	0.0513	12.2782	130
NPW	0016	1005	Antimony	95 to 900	0.959	-3.6479	0.0779	3.2351	55
NPW	0002	1010	Arsenic	70 to 900	1.0062	-0.7508	0.0529	1.408	54

NPW	0237	1015	Barium	100 to 2500	0.9986	-0.6148	0.0433	0.0448	86
NPW	0003	1020	Beryllium	8 to 900	0.991	-0.6177	0.046	0.278	5.3
NPW		1025	Boron	800 to 2000	0.9815	13.987	0.0603	-3.4879	660
NPW	0004	1030	Cadmium	8 to 750	0.994	0.2323	0.0463	0.3919	5.9
NPW	0006	1040	Chromium, total	17 to 1000	1.0015	-0.2586	0.042	0.7988	12
NPW	0238	1045	Chromium VI	45 to 880	0.9974	-1.1203	0.0575	1.5828	31
NPW	0005	1050	Cobalt	28 to 1000	1.0002	-0.281	0.0395	0.4922	22
NPW	0007	1055	Copper	40 to 900	1.0031	-0.089	0.0296	1.2415	32
NPW	8000	1070	Iron	200 to 4000	1.0056	1.1497	0.039	2.0258	170
NPW	0012	1075	Lead	70 to 3000	0.9974	0.2778	0.0377	2.5294	54
NPW	0010	1090	Manganese	70 to 4000	1.0059	-1.1375	0.0351	0.3422	60
NPW	0009	1095	Mercury ¹²	2.0 to 30	0.9772	0.0995	0.1211	0.0262	1.2
NPW	0074	1100	Molybdenum	60 to 600	0.9950	-0.0183	0.0445	2.1345	45
NPW	0011	1105	Nickel	80 to 3000	1.0125	-1.6585	0.0333	2.0479	65
NPW	0013	1140	Selenium	90 to 2000	0.9774	-1.2658	0.0594	1.0204	67
NPW	0017	1150	Silver	26 to 600	1.0024	-0.2284	0.0475	0.1752	21
NPW	0075	1160	Strontium	30 to 300	1.0025	-0.2355	0.0390	1.1644	22
NPW	0018	1165	Thallium	60 to 900	1.0109	-4.1903	0.0495	8.6236	21
NPW	0239	1175	Tin	1000 to 5000	1.005	-6.8244	0.073	-4.266	790
NPW	0076	1180	Titanium	80 to 300	0.9927	0.075	0.042	0.577	67
NPW	0014	1185	Vanadium	55 to 2000	0.9969	0.1627	0.0399	0.3403	47
NPW	0015	1190	Zinc	100 to 2000	1.0014	2.1592	0.0464	1.5819	83
			Demands ¹²	mg/L					mg/L
NPW	0038	1530	5-day BOD ¹²	15 to 250	0.6312	0.1919	0.1032	0.167	4.5
NPW	0102	1555	Carbonaceous BOD ¹²	15 to 250	0.5423	0.2956	0.0996	0.0697	3.7
NPW	0036	1565	COD ¹²	30 to 250	0.9517	0.4748	0.0471	2.4507	17
NPW	0037	2040	TOC ¹²	6.0 to 100	0.9904	0.1647	0.0508	0.1115	4.8
			Minerals	mg/L					mg/L
NPW	0027	1505	Alkalinity, total (CaCO ₃)	10 to 120	0.9775	1.2668	0.0223	1.1905	6.8
NPW	0023	1035	Calcium	3.5 to 110	1.0135	0.0036	0.0377	0.1333	2.7
NPW	0028	1575	Chloride	35 to 275	0.9941	0.5826	0.0415	0.5513	29
NPW	0029	1730	Fluoride	0.3 to 4	1.0029	-0.0032	0.0423	0.0401	0.13
			Calcium hardness as						
NPW		1550	CaCO3	8.7 to 275	1.0135	0.0090	0.0377	0.3328	6.8

NPW	0022	1755	Hardness, total (CaCO ₃)	17 to 440		See footnote 8			8.4
NPW	0024	1085	Magnesium	2.0 to 40	1.0056	-0.0744	0.0483	0.0094	1.6
NPW	0026	1125	Potassium	4.0 to 40	1.0104	-0.0582	0.0569	0.1131	3.0
NPW	0025	1155	Sodium	6.0 to 100	0.9949	0.2127	0.0487	0.0668	5.1
				200 to 930	study	•			••••
NPW	0020	1610	Spec. Cond. (25°C)	µmhos/cm	mean		0.0263	3.5534	170
NPW	0030	2000	Sulfate	5.0 to 125	0.9854	0.0483	0.0471	0.4629	2.8
NPW		2005	Sulfide	1.0 to 10	0.9657	-0.1271	0.1205	0.2816	0.10
			Total Dissolved Solids at		study				
NPW	0021	1955	180°C	140 to 650	mean		0.0686	4.3676	98
NPW	0105	1950	Total Solids	140 to 675	0.9875	1.789	0.0107	9.594	106
			Nutrients	mg/L					mg/L
NPW	0031	1515	Ammonia as N	0.65 to 19	0.9866	0.0806	0.0775	0.0738	0.35
NPW	0032	1810	Nitrate as N	0.25 to 40	0.9921	0.0096	0.0708	0.0050	0.19
NPW		1820	Nitrate-nitrite as N	0.25 to 40	0.9879	0.0080	0.0575	0.0053	0.20
NPW		1840	Nitrite as N	0.4 to 4.0	1.0021	-0.0056	0.0432	0.0214	0.28
NPW	0033	1870	Orthophosphate as P	0.5 to 5.5	1.0026	0.0055	0.0537	0.0268	0.34
NPW	0034	1795	Total Kjeldahl-Nitrogen ¹²	1.5 to 35	0.9645	0.1885	0.1035	0.0225	1.1
NPW	0035	1910	Total Phosphorus ²¹	0.5 to 10	1.0014	0.0224	0.0553	0.0320	0.34
			Misc. Analytes	mg/L					mg/L
NPW	0072	1960	Non-Filterable Residue	23 to 100	0.9728	-0.6338	0.0300	1.5793	14
NPW	0104	1860	Oil & Grease ¹²	20 to 100	0.9400	-0.4116	0.0545	2.0789	8.8
INF VV	0104	1000	Total Petroleum	2010/100	0.9400	-0.4110	0.0545	2.0709	0.0
NPW		1935	Hydrocarbons ⁹	20 to 170	0.9692	-1.1573	0.1586	0.3709	7.6
			•			± 0.2 units fixed			Not
NPW	0019	1900	pH ¹²	5.0 to 10 units		acceptance limit			applicable
NPW	0071	1645	Total Cyanide ¹²	0.1 to 1	0.9931	0.0052	0.0922	0.0234	0.01
NPW	0097	1905	Total Phenolics (4AAP) ¹²	0.06 to 5	0.6618	0.0001	0.0975	0.003	0.01
NPW	0098	1940	Total Residual Chlorine	0.5 to 3.0	0.9643	0.0186	0.0848	0.0027	0.36
NPW		2025	Surfactants - MBAS	0.2 to 1.0	1.0421	-0.0068	0.1326	0.0046	0.10
			Low Level Analytes ¹⁵						
NPW		1095	Mercury ¹²	20 to 100 ng/L	0.9910	0.2064	0.0432	2.5774	9.7
NPW		1940	Total Residual Chlorine	50 to 250 µg/L	1.0000	0.0000	0.0000	20.0000	5.0
				00 10 L00 µg/L		0.0000	0.0000	_0.0000	0.0

			Pesticides ¹	µg/L					µg/L
NPW	0047	7025	Aldrin	0.5 to 15.0	0.8245	0.0361	0.1824	0.0020	0.17
NPW	0079	7110	alpha-BHC	2.0 to 15	0.9027	-0.0286	0.1395	0.1128	0.60
NPW	0080	7115	beta-BHC	2.0 to 15	0.8729	0.1076	0.1494	0.0605	0.77
NPW	0081	7105	delta-BHC	2.0 to 15	0.8960	-0.0924	0.1650	0.0440	0.57
NPW	0082	7120	gamma-BHC (Lindane)	2.0 to 15	0.8868	0.0496	0.1549	0.0485	0.74
NPW		7240	alpha-Chlordane	1.0 to 9.8	0.8846	0.0940	0.1442	0.0369	0.43
NPW		7245	gamma-Chlordane	1.2 to 7.8	0.8643	0.1274	0.1555	0.0157	0.55
NPW	0053	7250	Chlordane (total)	3.0 to 25	0.9080	0.0288	0.1774	0.0125	1.1
NPW	0049	7355	DDD (4,4)	2.0 to 10.0	0.8735	0.1655	0.1739	0.0166	0.97
NPW	0050	7360	DDE (4,4)	2.0 to 10.0	0.8586	0.0716	0.1349	0.0458	0.84
NPW	0051	7365	DDT (4,4)	1.0 to 10	0.8798	0.1065	0.1692	0.0325	0.38
NPW	0048	7470	Dieldrin	1.0 to 13	0.9229	0.0173	0.1415	0.0280	0.43
NPW	0083	7510	Endosulfan I	4.0 to 17	0.9252	-0.5541	0.1932	-0.0031	0.83
NPW	0084	7515	Endosulfan II	4.0 to 20	0.7859	0.4000	0.1682	0.0173	1.4
NPW	0085	7520	Endosulfan sulfate	2.0 to 20	0.9216	-0.0333	0.1790	0.0136	0.69
NPW	0086	7540	Endrin	2.0 to 20	0.9005	0.1935	0.1886	0.0033	0.85
NPW	0087	7530	Endrin aldehyde	4.0 to 20	0.8812	0.1766	0.1825	0.1917	0.93
NPW	0052	7685	Heptachlor	1.0 to 10	0.8358	0.0592	0.1710	0.0174	0.33
NPW	0078	7690	Heptachlor Epoxide (beta)	1.0 to 10	0.9449	0.0145	0.1448	0.0339	0.42
NPW	0234	7810	Methoxychlor	2.0 to 15	0.9125	0.1018	0.2095	0.0902	0.40
NPW	0241	8250	Toxaphene	20 to 100	0.8500	0.1293	0.3186	0.0039	2.0
			Volatile Aromatics ¹	μg/L					μg/L
NPW	0065	4375	Benzene	8.0 to 120	0.9947	0.1003	0.0832	0.4709	4.6
NPW	0094	4610	1,2 Dichlorobenzene	8.0 to 100	0.9963	-0.0300	0.0971	0.2351	4.9
NPW	0096	4615	1,3 Dichlorobenzene	9.0 to 125	0.9776	-0.1210	0.0949	0.2922	5.2
NPW	0095	4620	1,4 Dichlorobenzene	8.0 to 115	0.9569	0.5677	0.0901	0.3965	4.9
NPW	0066	4765	Ethylbenzene	9.0 to 100	0.9748	0.2941	0.0927	0.2538	5.8
NPW	0067	5140	Toluene	7.0 to 100	0.9651	0.5102	0.0908	0.1429	4.9
NPW	0242	5260	Xylenes, total	20 to 300	0.9498	1.1598	0.1232	0.7309	10
			Volatile Halocarbons ¹	μg/L					µg/L
NPW	0060	4395	Bromodichloromethane	8.0 to 115	1.0357	-0.4163	0.1057	0.0858	۳ <u>9</u> , – 5.0
NPW	0062	4400	Bromoform	11 to 100	1.0311	-1.2680	0.1201	0.1464	5.6
							0		0.0

						± 60% fixed			
NPW	0243	4950	Bromomethane	20 to 100		acceptance limit			8.0
NPW	0058	4455	Carbon tetrachloride	10 to 140	0.9443	0.6895	0.1362	-0.0042	6.0
NPW	0064	4475	Chlorobenzene	10 to 120	0.9830	0.2498	0.0867	0.1251	7.1
	0001			10 10 120	010000	± 60% fixed	0.0001	011201	
NPW	0244	4485	Chloroethane	20 to 100		acceptance limit			8.0
NPW	0055	4505	Chloroform	12 to 95	0.9782	0.7000	0.0944	0.2960	8.1
						± 60% fixed			
NPW	0245	4960	Chloromethane	20 to 100		acceptance limit			8.0
NPW	0061	4575	Dibromochloromethane	11 to 140	1.0106	-0.3030	0.1066	0.0429	7.2
NPW	0054	4635	1,2 Dichloroethane	10 to 150	0.9944	0.6439	0.0996	0.2430	6.8
NPW	0246	4640	1,1-Dichloroethene	11 to 120	0.9755	0.4917	0.1558	-0.0034	6.1
NPW	0247	4700	trans-1,2-Dichloroethene	10 to 150	0.9923	0.4034	0.1103	1.1416	3.6
NPW	0248	4655	1,2-Dichloropropane	10 to 150	0.9845	0.1804	0.1062	0.2955	5.9
NPW	0249	4685	trans-1,3-Dichloropropene	8.0 to 90	1.0191	-1.2898	0.1180	0.0196	3.9
NPW	0063	4975	Methylene Chloride	10 to 125	0.9904	0.7613	0.1244	0.3606	5.8
			4-Methyl-2-pentanone			a /			
NPW		4995	(MIBK)	20 to 200	0.9906	-0.7774	0.1482	1.9461	4.3
NPW	~~~~	5100	Styrene	20 to 100	1.0019	0.1069	0.1268	-0.3703	13
NPW	0250	5110	1,1,2,2-Tetrachloroethane	10 to 150	1.0143	0.6507	0.1343	0.9582	3.9
NPW	0059	5115	Tetrachloroethene	10 to 150	0.9416	-0.5063	0.1189	0.3441	4.3
NPW	0056	5160	1,1,1-Trichloroethane	10 to 90	0.9579	0.7134	0.1131	0.1383	6.5
NPW	0251	5165	1,1,2-Trichloroethane	25 to 150	0.9818	0.9864	0.0979	0.2099	17
NPW	0057	5170	Trichloroethene	10 to 95	0.9611	0.5720	0.1077	0.2478	6.2
NPW	0252	5175	Trichlereflueremethere	20 to 100		± 60% fixed			8.0
INFVV	0252	5175	Trichlorofluoromethane	20 to 100		acceptance limit ± 60% fixed			0.0
NPW	0253	5235	Vinyl chloride	20 to 100		acceptance limit			8.0
	0200	0200							0.0
			Base/Neutrals ¹	μg/L					µg/L
NPW	0189	5500	Acenaphthene	10 to 200	0.7692	2.3467	0.1308	0.1433	5.6
NPW	0190	5505	Acenaphthylene	10 to 200	0.799	0.6883	0.13	0.6054	3.0
NPW	0192	5555	Anthracene	10 to 200	0.8168	1.6860	0.1344	0.3049	4.9
NPW	0176	5595	Benzidine	200 to 1000	1.167	-12.268	0.579	-0.301	20
NPW	0177	5575	Benzo(a)anthracene	10 to 200	0.8592	0.1699	0.1324	0.2827	3.9
NPW	0254	5670	Benzyl butyl phthalate	50 to 200	0.8086	-0.1081	0.1818	2.8651	5.0
NPW	0178	5585	Benzo(b)fluoranthene	20 to 125	0.8568	0.2258	0.1503	0.8321	5.8

NPW	0179	5600	Benzo(k)fluoranthene	25 to 200	0.8223	1.996	0.1862	1.126	5.0
NPW	0180	5590	Benzo(g,h,i)perylene	20 to 200	0.8717	-0.4162	0.1406	1.8871	2.9
NPW	0255	5580	Benzo(a)pyrene	20 to 160	0.7547	2.2185	0.1551	0.5266	6.4
			4-Bromophenyl-						
NPW	0198	5660	phenylether	20 to 200	0.8099	2.3636	0.1677	0.1142	8.1
NPW	0195	5760	bis(2- Chloroethoxy)methane	10 to 200	0.7828	0.898	0.128	0.4366	3.6
NPW	0195	5765	bis(2-Chloroethyl)ether	10 to 200	0.7828	3.7209	0.128	0.4300	3.0 4.8
	0190	5705	bis(2-Chloroisopropyl)	10 10 200	0.712	5.7209	0.134	0.40	4.0
NPW	0197	5780	ether	30 to 200	0.6943	4.2457	0.1580	0.4258	9.6
NPW	0256	6255	Bis(2-ethylhexyl) phthalate	20 to 200	0.7960	3.9523	0.1698	1.0070	6.6
			4-Chlorophenyl-						
NPW	0204	5825	phenylether	25 to 200	0.7921	1.9652	0.1413	0.4139	9.9
NPW	0203	5795	2-Chloronaphthalene	20 to 200	0.7526	0.4699	0.1461	0.4542	5.4
NPW	0181	5855	Chrysene	10 to 200	0.8153	2.8201	0.1454	0.4654	5.2
NPW	0182	5895	Dibenzo(a,h)anthracene	20 to 100	0.8191	1.4972	0.1766	0.7749	4.9
NPW		5905	Dibenzofuran	30 to 125	0.7594	3.6744	0.1427	0.5944	11
NPW		4610	1,2-Dichlorobenzene ¹⁰	30 to 150	0.6396	1.9392	0.1644	1.4848	3.0
NPW		4615	1,3-Dichlorobenzene ¹⁰	30 to 150	0.6206	2.4567	0.1696	0.4375	4.5
NPW		4620	1,4-Dichlorobenzene ¹⁰	30 to 150	0.6238	2.0966	0.1693	1.4687	3.0
NPW	0185	5945	3,3'-Dichlorobenzidine	60 to 200	0.901	-0.5596	0.199	2.5071	10
NPW	0208	6070	Diethyl phthalate	65 to 170	0.7492	3.3637	0.1805	2.0213	10
NPW	0209	6135	Dimethyl phthalate	100 to 180	0.6375	3.9631	0.2524	0.8174	10
NPW	0205	5925	Di-n-butylphthalate	40 to 180	0.7665	5.1677	0.1519	1.1586	14
NPW	0186	6185	2,4-Dinitrotoluene	20 to 190	0.7893	1.5498	0.1311	1.3861	5.3
NPW	0210	6190	2,6-Dinitrotoluene	20 to 190	0.8382	-0.5125	0.1354	0.4540	6.7
NPW	0211	6200	Di-n-octylphthalate	40 to 190	0.7877	6.3589	0.2174	-0.7312	14
NPW	0212	6265	Fluoranthene	30 to 190	0.7829	4.1019	0.1195	0.7518	14
NPW	0213	6270	Fluorene	30 to 190	0.7942	1.7962	0.1083	1.8219	10
NPW	0214	6275	Hexachlorobenzene	20 to 190	0.8153	1.5416	0.1227	0.9249	7.7
NPW	0215	4835	Hexachlorobutadiene	50 to 180	0.6286	2.6591	0.1616	1.9082	5.0
	0040	0005	Hexachlorocyclopentadien	400 4 005	0.0040	4 4000	0.0040	4 0 0 0 0	10
NPW	0216	6285	e	100 to 225	0.6216	-4.4226	0.2049	4.3222	10
NPW	0217	4840	Hexachloroethane	50 to 190	0.6260	1.5100	0.1722	0.6725	5.0
NPW	0218	6315	Indeno(1,2,3, cd)pyrene	30 to 125	0.7650	1.1259	0.1377	2.4614	4.3
NPW	0219	6320	Isophorone	30 to 140	0.8256	1.6016	0.1489	0.0824	13
NPW		6385	2-Methylnaphthalene	30 to 190	0.6340	4.4846	0.1349	2.6122	3.5

NPW	0222	5005	Naphthalene	30 to 190	0.6879	4.2817	0.1513	0.2921	10
NPW	0226	5015	Nitrobenzene	20 to 190	0.7413	2.4610	0.1470	0.3946	7.2
NPW	0227	6530	N-Nitrosodimethylamine	75 to 200	0.532	0.7787	0.202	1.4455	7.5
NPW	0230	6545	N-Nitroso-di-n-propylamine	30 to 140	0.7646	2.2742	0.1370	2.6637	4.8
NPW	0229	6535	N-Nitrosodiphenylamine	30 to 200	0.776	1.9604	0.178	0.9231	6.4
NPW	0231	6615	Phenanthrene	30 to 140	0.7965	3.7050	0.1194	0.4330	15
NPW	0187	6665	Pyrene	30 to 200	0.8196	2.682	0.161	1.062	9.6
NPW	0092	5155	1,2,4-Trichlorobenzene	35 to 180	0.6923	1.5037	0.1490	1.3815	5.0
			Acids ¹	µg/L					µg/L
NPW	0161	5700	4-Chloro-3-methylphenol	30 to 200	0.845	-0.891	0.146	0.3823	µg/⊏ 10
NPW	0162	5800	2-Chlorophenol	30 to 200	0.754	2.2054	0.163	-0.185	10
NPW	0163	6000	2,4-Dichlorophenol	40 to 190	0.7618	1.8795	0.1392	1.4585	11
NPW	0165	6130	2,4-Dimethylphenol	65 to 200	0.77	-0.7906	0.174	1.0376	10
NPW	0167	6175	2,4-Dinitrophenol	100 to 180	0.6531	3.5920	0.1695	8.5727	10
NPW	0168	6360	2-Methyl-4,6-Dinitrophenol	60 to 200	0.9582	-10.24	0.1756	0.4841	14
NPW		6400	2-Methylphenol (o-Cresol)	50 to 200	0.6983	1.6107	0.1704	0.4833	9.5
			4-Methylphenol (p-						
NPW		6410	Cresol) ¹¹	50 to 200	0.6531	2.1854	0.2008	0.7807	5.0
NPW	0171	6490	2-Nitrophenol	50 to 190	0.7650	0.8551	0.1948	-2.1253	16
NPW	0173	6500	4-Nitrophenol	100 to 180	0.5591	-1.0075	0.2511	1.9409	10
NPW	0174	6625	Phenol	100 to 200	0.557	0.5929	0.253	1.0269	10
NPW	0158	6605	Pentachlorophenol	55 to 200	0.849	-3.1159	0.178	1.0189	11
NPW	0175	6835	2,4,5-Trichlorophenol	50 to 200	0.7760	4.7287	0.1503	0.4511	19
NPW	0159	6840	2,4,6-Trichlorophenol	50 to 200	0.7640	2.6926	0.1479	0.9226	16
			PCBs in Water ^{2,12}	µg/L					µg/L
NPW	0040	8880	Aroclor 1016	3.8 to 13	0.8344	0.081	0.2101	-0.1922	1.4
NPW	0041	8885	Aroclor 1221	1 to 15	0.7867	0.2517	0.2005	0.1023	0.13
NPW	0042	8890	Aroclor 1232	1.4 to 4	0.9463	-0.0779	0.3325	-0.2539	0.61
NPW	0040	8895	Aroclor 1242	3.8 to 13	0.8344	0.081	0.2101	-0.1922	1.4
NPW	0044	8900	Aroclor 1248	1.5 to 5.5	0.9327	-0.0919	0.1699	-0.0187	0.60
NPW	0045	8905	Aroclor 1254	1.7 to 5.5	0.8622	0.114	0.1129	0.1214	0.64
NPW	0046	8910	Aroclor 1260	1.6 to 5	0.9507	-0.1281	0.1087	0.085	0.62

Herbicides¹

µg/L

µg/L

NPW	0257	8545	2,4-D	2 to 10	0.7510	0.1195	0.2675	0.1049	0.2
NPW	0258	8595	Dicamba	2 to 10	0.759	0.059	0.214	0.0954	0.2
NPW	0140	8655	2,4,5-T	2 to 10	0.783	-0.0043	0.205	0.1616	0.2
NPW	0259	8650	2,4,5-TP (Silvex)	2 to 10	0.7987	0.0112	0.2001	0.1190	0.2

1) For volatiles, pesticides, base/neutrals, acids, and herbicides standards, providers must include a minimum number of analytes using the same criteria described in Chapter 2, Appendix B, Section B.1.2.

2) One sample (minimum) in every study, containing one Aroclor, selected at random from among the Aroclors listed above.

3) Acceptance limits are set at the Mean \pm 3 SD

(Mean = a^{T} + b; SD = c^{T} + d where T is the assigned value).

Quantitative Microbiology acceptance criteria are based on the robust participant Mean and SD determined from each respective PT study, after outlier removal.

4) If the lower acceptance limit generated using the criteria contained in this table is less than (<) 10% of the assigned value, the lower acceptance limits are set at 10% of the assigned value with the exception of microbiology analytes.

5) If the lower acceptance limit generated using the criteria contained in this table is greater than 90% of the assigned value, the lower acceptance limits are set at 90% of the assigned value with the exception of microbiology analytes.

6) If the upper acceptance limit generated using the criteria contained in this table is less than 110% of the assigned value, the upper acceptance limits are set at 110% of the assigned value with the exception of microbiology analytes.

7) NELAC Proficiency Testing Reporting Limits (PTRLs) are provided as guidance to laboratories analyzing NELAC PT samples. These levels are the lowest acceptable results that could be obtained from the lowest spike level for each analyte. The laboratory should report any positive result down to the PTRL. It is recognized that in some cases (especially for analytes that typically exhibit low recovery) the PTRL may be below the standard laboratory reporting limit. However, the laboratory should use a method that is sensitive enough to generate results at the PTRL shown. NELAC PTRLs are also provided as guidance to PT Providers. At a minimum for all analytes with an assigned value equal to "0", the PT Provider should verify that the sample does not contain the analyte at a concentration greater than or equal to the PTRL.

8) The Acceptance Criteria for Hardness, total (CaCO3) is a function of the Lower Acceptance Limit (LAL) and Upper Acceptance Limit (UAL) of both Calcium and Magnesium and are calculated as follows:

Lower Acceptance Limit = Ca LAL*2.497 + Mg LAL*4.118 Upper Acceptance Limit = Ca UAL*2.497 + Mg UAL*4.118

9) Total Petroleum Hydrocarbons per solvent extraction with silica gel clean-up followed by gravimetric or infrared spectrometric technologies.

10) Dichlorobenzenes per solvent extraction and semivolatile analytical technologies.

11) Laboratories seeking or maintaining NELAP accreditation for Non-Potable Water 4-Methylphenol or the coeluting isomer pair of 3-Methylphenol and 4-Methylphenol must meet the NELAC PT requirements for this Field of Proficiency Testing (4-Methylphenol).

12) The following recommended sample designs, which were used in past USEPA studies, should be used as model designs because other designs may not give equivalent statistics. PT study providers may vary their sample designs from those shown. The specifics within each sample are within the discretion of the PT study Provider.

- Mercury – 1:1 (mole:mole as Hg) Mercuric Oxide and Methyl Mercuric Chloride.

- Demands – 1:1 Glucose and Glutamic Acid.

- Total Organic Carbon – The assigned value of TOC is (0.4000 times mg Glucose plus 0.4082 times mg Glutamic Acid) divided by total liters of sample adjusted for required dilutions.

- Chemical Oxygen Demand – The assigned value of COD is (1.066 times mg Glucose plus 0.9787 times mg Glutamic Acid) divided by total liters of sample adjusted for required dilutions.

- 5-Day BOD and Carbonaceous BOD – The assigned value used for BOD and CBOD is the known concentration in mg/Liter of Glucose - Glutamic Acid present in the sample ready for analysis.

- Total Kjeldahl Nitrogen – Glycine is the source of TKN.

- Total Cyanide – Potassium Ferricyanide.

- pH – in separate solution (use buffer formulation from chemical handbook).

- Total Phenolics (4AAP) – 40% Phenol, 20% 2-Chlorophenol, 20% 2,4-Dinitrophenol, 20% 2,4-Dichlorophenol (mole %), calculated as mg/L Phenol.

- Oil and Grease – 1:1 Paraffin oil and cooking oil.

- PCBs in Water – Two samples in every study, each containing a different Aroclor, selected at random from among the Aroclors listed.

- PCBS in Oil – Two samples in every study, each containing a different Aroclor, selected at random from among the Aroclors listed. All previous USEPA studies used transformer oil.

13) These limits are for quantitative methods using membrane filtration techniques.

14) These limits are for quantitative methods using most probable number techniques.

15) Low Level Analytes' concentration range and acceptance criteria are specifically intented for technologies/methods that can achieve the listed PTRL.

Attachment C

Standard Interpretation Request Reviews

#72	
Section (eg. C.4.1.7.4)	SCM FoPT (7/1/07); NELAC Analyte 1935, footnote 13
Describe the problem:	The SCM PT standard for TPH references HEM/SGT on the FoPT. HEM/SGT is a method defined analyte for method to 1664A. The scope and application section of 1664A says that it is for "surface and saline waters and industrial and domestic aqueous wastes". Therefore, the method has to be modified to be performed on solid and chemical materials. Is it appropriate to have a required PT for a non-standard method?
Comments	 <u>Gary comment 10/21/09</u>: It is appropriate to have a PT for any analyte/method where the method is used with sufficient frequency and in support of environmental decision making regardless of the source of the method. <u>Eric comment 11/16/09</u>: Upon consideration, I have to agree to some extent with this SIR #72. HEM on a solid is performed by 9071B. 9071B does not discuss SGT. SGT is only discussed in 9070A/1664A, which was written for water. The units on the Soil FoPT table are in mg/kg. Scanning the list of approved SW-846 methods, I could not a gravimetric analysis that would apply to this PT, without, technically, modifying the method (9071B) to accommodate for Silica Gel Treatment. Therefore, I think the commenter is correct in that we should not be applying a requirement for this PT to HEM methods. Method 8440, TPH by IR, would appear to possibly still apply to this PT?? If so, at this point, I would suggest that the PT Board consider revising the footnote of this PT to indicate that this PT is only to be required where used in conjunction with supercritical carbon dioxide extraction and subsequent IR analysis.
Response	

#75	
Section (eg. C.4.1.7.4)	2.2.1, Appendix C.3
Describe the problem:	The result for EDB of <0.500ug/L was scored "not acceptable", against the true value of 0.299ug/L and limits of 0.179-0.419ug/L. This result is not identified as

	consideration for unacceptable criteria.
	We disagree, and feel that this result should be scored acceptable. 0.299ug/L is less than 0.500ug/L.
	<u>Gary Comment 10/21/09</u> : EDB has an MCL of 0.05 ug/L. I believe that if the laboratory is supporting any regulatory work or if they ever report a value to a client at a concentration below 0.500 ug/L then their score is unacceptable. I would also argue that if the laboratory cannot meet the MCL or generally accepted MDL then the method is a modified method and should not reference the regulatory method without noting that it is modified.
Comments	Eric Comment 11/16/09: Here is my suggestion for a possible response to this one – Based upon current acceptance criteria, the lab result for the analyte provided in the problem statement was correctly scored as not acceptable. Acceptance criteria for this analyte are currently based on the PT acceptance requirements outlined in Chapter 2 and Appendix C of the 2003 NELAC Standard. In addition, the FoPT tables currently include a footnote that states, "NELAC Proficiency Testing Reporting Limits (PTRLs) are provided as guidance to laboratories analyzing NELAC PT samples. These levels are the lowest acceptable results that could be obtained from the lowest spike level for each analyte. The laboratory should report any positive result down to the PTRL. It is recognized that in some cases (especially for analytes that typically exhibit low recover) that PTRL may be below the standard laboratory reporting limit. However, the laboratory should use a method that is sensitive enough to generate results at the PTRL shown" The laboratory should be aware of and take into account the corresponding PTRL for each analyte before reporting any PT results.
Response	<u>Current Draft</u> – Based upon current acceptance criteria, the lab result for the analyte provided in the problem statement was correctly scored as not acceptable. Acceptance criteria for this analyte are currently based on the PT acceptance requirements outlined in Chapter 2 and Appendix C of the 2003 NELAC Standard. In addition, the FoPT tables currently include a footnote that states, "NELAC Proficiency Testing Reporting Limits (PTRLs) are provided as guidance to laboratories analyzing NELAC PT samples. These levels are the lowest acceptable

la sc be m T	results that could be obtained from the lowest spike level for each analyte. The aboratory should report any positive result down to the PTRL. It is recognized that in some cases (especially for analytes that typically exhibit low recover) that PTRL may be below the standard laboratory reporting limit. However, the laboratory should use a method that is sensitive enough to generate results at the PTRL shown" The laboratory should be aware of and take into account the corresponding PTRL for each analyte before reporting any PT results.
--------------------------	--

#80				
Section (eg. C.4.1.7.4)	List of analytes that required Proficiency Testing			
Describe the problem:	We are currently accredited for method SW 846 8151, but we want to add Pentachlorophenol by 8151 to our scope. Pentachlorophenol is not listed as requiring PT with the other Herbicides that are analyzed by 8151 that are listed. Therefore, I interpret that as Pentachlorophenol by method 8151 does not require PT. Our Accrediting Body says otherwise. They contend that because Pentachlorophenol is listed under the Acid Extractables (Method 625 or 8270) that require PT, it also requires PT if we want to add it to our 8151 scope.			
	Please advise. Thank you.			
Comments	Gary Comment 10/21/09: Pentachlorophenol is listed as an analyte for 8151 and is included in the PT sample for herbicides. While the tables have classified pentachlorophenol as an acid this is a general classification and does not imply an analytical method. The acceptance criteria are not method specific at this time so I would say there is a valid PT sample available and the lab is required to report it if wants accreditation.			
	Eric Comment 11/16/09 : I have written a response below that I would suggest. It is consistent with our previous SIR response #26, but updated based on the documented position of the previous NELAC PT Board. In our previous response #26 we felt that group headers must hold significance. Acceptance ranges and spiking concentrations			

	 have been previously determined in part based on how they are grouped, so I don't think we can ignore those group headers. I also think we are limited to only offering our position, not telling the NELAP Board what they have to do. If the NELAP Board chooses to not follow our recommendation, then they choose to operate and accredit outside of our guidance. Here's my suggested response - The Accrediting Body's interpretation is consistent with guidance provided a number of years ago by the previous Board overseeing the FOPT tables, the NELAC PT Board. However, the TNI PT Board's current consensus is that group headers in those FOPT tables hold important significance, and group headers are to be utilized to classify when an analyte is required to be processed and analyzed. The TNI PT Board would agree that there has been a general lack of consistency within all sectors of the community on how the group headers in the FOPT tables are being interpreted. The TNI PT Board is currently working to address this by adding some clarification on this matter to the FOPT tables. Until such time as the revised FOPT tables become available, the TNI PT Board recommends that the current FOPT table group headers be taken into consideration and used as guidelines for classifying when a PT is required. The final decision on whether the AB grants accreditation based on TNI PT Board guidance lies with the AB and the consensus of the NELAP Board.
	AB and the consensus of the NELAP Board.
Response	<u>Current Draft</u> – The Accrediting Body's interpretation is consistent with guidance provided a number of years ago by the previous Board overseeing the FOPT tables, the NELAC PT Board.

However, the TNI PT Board's current consensus is that group headers in those FOPT tables hold important significance, and group headers are to be utilized to classify when an analyte is required to be processed and analyzed.
The TNI PT Board would agree that there has been a general lack of consistency within all sectors of the community on how the group headers in the FOPT tables are being interpreted. The TNI PT Board is currently working to address this by adding some clarification on this matter to the FOPT tables.
Until such time as the revised FOPT tables become available, the TNI PT Board recommends that the current FOPT table group headers be taken into consideration and used as guidelines for classifying when a PT is required. The final decision on whether the AB grants accreditation based on TNI PT Board guidance lies with the AB and the consensus of the NELAP Board.

#91

Section (eg. C.4.1.7.4)	C.1.1.1 and C.1.1.2 retrieved from: http://www.a2la.org/checklists/NELAC_CH_2_Pt_Provider_Checklist.pdf
Describe the problem:	My question stems from the recent DMR-QA 29 Study that my laboratory participated in, specifically the settleable solids parameter (SM2540F, volumetric). I am looking for clarification as to why a test that does not produce answers to three significant figures can be held to such a standard when it comes to PT acceptance ranges. When calculating an answer, SM 1050B instructs to round off an answer to "as few significant figures as are present in the factor with the fewest significant figures". For Settleable Solids, it is not possible to report to three significant figures. Therefore, as in our case, an assigned value of 25.6 ml/l for the PT sample is not even a realistic/obtainable result. To then take such data and use it to calculate acceptance ranges ends up limiting the labs further than they should be. Meaning, the assigned acceptance range of 20.0-32.9 ml/l for our sample is really saying 20.0-32.0 because the test doesn't allow detection at a third significant figure. For this particular test, calculating limits this way will always result in the labs having a narrower range than

	intended, 0.9 ml/l in this case.			
	I appreciate all feedback on this matter. Thank you,			
Comments	<u>Carl comment 11/12/09</u> - CCK DRAFT: The requirement for 3 significant figures does not pertain to a laboratory requirement for reporting PT test results, but to a requirement of the PT Provider to express the assigned value and its acceptance limits.			
	For Settleable Residue, it is technically possible for laboratories to report 3 significant figures, particularly if the gravimetric option is employed for the test instead of the volumetric option. Nevertheless, depending on how the Settleable Residue PT is packaged, it may be possible for PT Providers to verify the Assigned Value to 3 significant figures, even if some laboratories cannot do so in the reconstituted PT.			
	It should be noted that Settleable Residue is currently an Experimental FoPT, meaning that NELAP accreditation status for Settleable Residue should be based on participating in the PT study and not on passing or failing the PT at this time. However, since the PT acceptance limits are currently under review, the Subcommittee handling this will take note to see if possible significant figure concerns would factor into any PT acceptance criteria being recommended.			
	from EPA's "National Standards for Water Proficiency Testing Studies Criteria Document," which was issued at the time that US EPA no longer supplied WS and WP proficiency samples. Changing the significant figure requirement thus may not meet with EPA endorsement.			
	<u>Eric comment 11/12/09</u> –I like what you wrote. If we proceed with approving this response, I would make two suggestions for consideration. How about we move paragraph 4 up to the end of paragraph 1? Also, since the concern raised was in reference to DMRQA and not Accreditation, I would suggest removing the statement regarding Experimental FoPT vs. Accreditation FoPT status. Here's what I'm suggesting -			
	The requirement for 3 significant figures does not pertain to a laboratory requirement for reporting PT test results, but to a requirement of the PT Provider to express the			

	assigned value and its acceptance limits. It should also be noted that the <u>The</u> original requirement for 3 significant figures came from EPA's "National Standards for Water Proficiency Testing Studies Criteria Document," which was issued at the time that US EPA no longer supplied WS and WP proficiency samples. Changing the significant figure requirement thus may not meet with EPA endorsement.
	For Settleable Residue, it is technically possible for laboratories to report 3 significant figures, particularly if the gravimetric option is employed for the test instead of the volumetric option. Nevertheless, depending on how the Settleable Residue PT is packaged, it may be possible for PT Providers to verify the Assigned Value to 3 significant figures, even if some laboratories cannot do so in the reconstituted PT.
	It should be noted that Settleable Residue is currently an Experimental FoPT, meaning that NELAP accreditation status for Settleable Residue should be based on participating in the PT study and not on passing or failing the PT at this time. However, since the PT acceptance limits are currently under review, and the Subcommittee handling this will take note to see if possible significant figure concerns would factor into any PT acceptance criteria being recommended.
	I would like to make one additional suggestion for the PT Board's consideration. Since we are moving Experimental PTs over to the Accreditation table right now and Settleable Solids is one of those Experimental PTs being technically reviewed this month, maybe we should hold off on finalizing the response to SIR #91 until after the subcommittee has completed it's technical review of this analyte and had a chance to discuss the concern being presented here? I realize we won't have a combined Non-Potable water table ready by our Nov. 19 th PT Board meeting, but hopefully we will by our December 17 th meeting. Maybe then we could put some final touches on the last paragraph of the response you have prepared based on that technical review by the subcommittee? Just a thought for the Board's consideration.
Response	<u>Current Draft</u> – The requirement for 3 significant figures does not pertain to a laboratory requirement for reporting PT test results, but to a requirement of the PT Provider to express the assigned value and its acceptance limits. The original requirement for 3 significant figures came from EPA's "National Standards for Water Proficiency Testing Studies

Criteria Document," which was issued at the time that US EPA no longer supplied WS and WP proficiency samples. Changing the significant figure requirement thus may not meet with EPA endorsement.
For Settleable Residue, it is technically possible for laboratories to report 3 significant figures, particularly if the gravimetric option is employed for the test instead of the volumetric option. Nevertheless, depending on how the Settleable Residue PT is packaged, it may be possible for PT Providers to verify the Assigned Value to 3 significant figures, even if some laboratories cannot do so in the reconstituted PT.
However, the PT acceptance limits are currently under review, and the Subcommittee handling this will take note to see if possible significant figure concerns would factor into any PT acceptance criteria being recommended.

#95 (10-13-09)

Section (eg. C.4.1.7.4)	F.2.1, F.2.2, F.3		
Describe the problem:	I am confused about the PT requirements for labs doing WET analysis. The only 'true' PT is the DMRQA - but it runs longer than 45 days - which doesn't meet F.2.2 requirements. I need to know will the DMRQA be allowed and counted as a PT until such a time as the PT providers have other PTs available?		
Comments	<u>Stacie comment 11/19/09</u> –		
	Email from Kirsten McCracken to Jerry 10/22/09 – Ilona & Jerry: I had asked Ilona to forward the following SI request to the PT Board which she did and it was assigned to Stacie Metzler. Stacie is on the PTEC and the PT Board and she and I talked about this SI request this morning and she has found a conflict in the language of the 2003 NELAC Standard and we are not sure how to proceed with resolution so I am writing you for guidance.		
	Section F.2.2 of the 2003 NELAC standard says WET PT must be analyzed within 45 days of sample receipt. Section F.4.1 instructs labs to use DMRQ. The DMRQA study is open for 90 days.		
	Either the time-frames of the standard are in conflict or the authors of the standard intended that the DMRQA be used but that the samples be analyzed within 45 days even though		

	 DMRQA is open longer. Stacie has a few members and/or contacts that helped develop the appendix in the 2003 standard but nobody seems to recall a 45 day time-frame and the general consensus is that the 45 day time frame does not make sense. If there is a conflict in the 2003 Standard would this resolved by the PTEC, PT Board, NELAP Board, TNI Board, LASC – other? Email from Jerry Parr to Kirsten McCracken 11/19/09: Sorry; I meant to come back to this and then forgot. After looking at all of this closely, I think the NELAP Board will need to adopt a policy on this issue. Clearly, the 2003 standard is in error (one way or the other) and the only way to fix it is with the NELAP Board. LASC or the PTEC might be able to develop a recommendation. I checked the 2002 standard and it had a 60 day period; 30 days for analysis and 30 more days for reporting. Is this issue addressed in the TNI standard?
	From what you have said, it appears the PT committee would recommend a 90 day period if given the choice.
	Jerry
	Eric Comment 11/24/09: It looks to me like based on Jerry's comments provided by Stacie that this SIR #95 should be forwarded to the NELAP Board for response and resolution.
Response	

Attachment D

Action Items – TNI PT Board

			Expected	Actual
	Action Item	Who	Completion	Completion
10.	Let the new Chemistry FoPT	Carl / Ilona	When	Describe
	Subcommittee know that information is		Chemistry	what this is.
	available from NY regarding		FoPT	Soil in
	extraction/prep methods and PT results.		Subcommittee	metals too?
			is formed.	SVOA.
17.	Work on language for new TNI policy	Chuck	Eric will	Looking for
	based on NELAC Policy #16 and EPA		follow-up	volunteer to
	Criteria Document.		with Chuck to	help Chuck.
			determine a date.	
42	Submit modified footnote based on the	Eric	Before tables	
+2	micro discussion during the 3/19/09	Enc	are finalized.	
	meeting.		are manzed.	
	incomig.			
60	Post SOP 4-001 on the PT Board's	Ilona	Open	Complete
	website when finalized.		1	1
64	Fix typo in WS Table.	Eric	10/19/09	Open
70	Reassess need to contact PT Providers to	Eric	11/19/09	Backburner
	give them a heads-up on the FoPT table			
	updates.			
71	Prepare letter to Chem FoPT	Eric	10/19/09	Complete
/1	Subcommittee regarding the need to look	Enc	10/17/07	Complete
	at pH studies above 8.			
74	Provide announcement to PT Providers	Eric	11/24/09	Send heads-
	regarding new NPW low level analytes			up.
	effective 1-1-10.			_
77	Send an e-mail to the NELAP Board for	Eric	12/18/09	
	clarification on how multi-level			
	concentration PTs must be run. Does the			
	lab choose which to run? Must all be run?			
	Etc			
82	Invite Patrick to the next PT Board call.	Eric	12/16/09	
52				
83	Notify NELAP Board and Patrick Yellin	Eric	12-16-09	
	about vote on low level analytes and			
	forward approved updated table.			

	Action Item	Who	Expected Completion	Actual Completion
84	Forward concerns in writing about approving Low Level Total Residual Chlorine.	Chuck Carl	12/16/09	
85	Ask Brian to provide the reasons for approving the limit for Low Level Total Residual Chlorine.	Carl	12/16/09	
86	Forward Chem FoPT Subcommittee minutes from 11-3-09 meeting to PT Board.	Ilona	12/16/09	
87	Revised A2LA documents to Eric later today (11-19-09) and this will be forwarded to the PT Board for final review.	Randy Eric	11/25/09	
88	Final comments to A2LA documents should be e-mailed to Board members and Randy. A vote will be held at the December 17, 2009 meeting.	All	12/17/09	
89	Review responses and comment on Standard Interpretation Requests.	All	12/17/09	

Attachment E

	Item	Meeting Reference	Comments
3	Send A2LA a formal request to ask PT Providers if PT data can be shared with the Board. Needs to be done before 8/09.	1/14/09	
5	Update PTPA Review SOP.	n/a	
6	DW Table Micro Total Coliform Rule Request	10/15/09	9 out of 10 vs. 10 out of 10

Backburner / Reminders – TNI PT Board